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ABSTRACT

In this report, an analysis of known integration formulas under

" random circumstances are presented and a procedure for designing an
"optimal'' integration formula which takes advantage of the statistical
knowledge of the integrand is developed.. The optimal integration
formula of a different degree is chosen according to the capacity of

the onboard computer and the required output frequency of the integrated
value of the integrand., It is shown that a higher degree optimal integra-
tion formula which carries less of a computational load can be effectively
derived from the second degree optimal integration formula, This will
reduce the computational complexity necessary for obtaining the optimal
coefficients of a higher degree integration formula on an off-line computer,
To overcome the difficulty of implementing the time varying coefficients
of an integration forﬁula, a method is developed for designing the con- -
stant coefficient suboptimal integration formula, Computational results
obtained by applying these integration formulas show significant improve-
ment over those obtained by using conventional integration rules, e. g.,

the trapezoid rule, Simpson's rule, or Newton's three-eighths rule.



1, INTRODUCTION

Most of numerical analysis texts [1] [2] deal with numerical integra-
tion problems by considering the integrand deterministically known at
equally-spaced sampling points, Integration formulas, such as the trape-
zoid rule, Simpson's rule and Newton's three-eights rule etc., are
derived by requiring the integration to be exact for the case when the
integrands.are polynomials of various order.

There seems to be a scarcity of literature in numerical analysis
dealing with the problem when the integrand is a stochastic function or.
a random process. Such problems arise frequently in real time applica-
tions. For example, in an inertial navigation system, the signal from
the gyro or accelerometer measurement device is by no means deter-
ministic, but rather a multi-dimensional random process with known
statistical properties andj~in generalj. theisignaliis corrupted by noise,
The purpose of this paper is to present a systematie procedurecfor .-
the development of integration formulas which explicitly takes the
statistical property of the integrand into account and which is optimal
{n the sense of minimizing the accumulated mean square error over the
whole integration interval,

For illustration, let us take a simple example."
Let

§< = y(t) : x(to) given

where y(t), the integrand, is a purely random process with zero mean
and unit variance, If the observations of the integrand at the sampling
points are z(ti)= Y(ti); i=0,1,...,N, then it is intuitively reasonable to

A / «
assert that the optimal integration formula is simple x(t = é\c(ti) + dz(ti)‘;

i+ 1
A ~ A
x(to) = x(to), where d is the sampling step size and X(ti) denotes the
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computed value of x(ti). ‘Any other foi'mula, e. g. Simpson's rule with

X*(ti N 2.) g X*(ti) +%— [Z(ti) + 4z(ti 4 I) + z(ti + 2.)], will yield a larger
mean square error as can be ea8ily verified (see section 3).

In this report, we restrict the consideration to cases where the
integrand is a linear function of a Markov random process (see section 2),
An analysis and comparison of the mean square integration error of various
known ir;tegration formulas applied to the above random process are
given in section 3, In section 4, the optimal integration formulas are
derived by minimizing the cumulated mean square error and are-proved
to be related to the Kalman-Bucy estimator which is well-known in
control theory [4]. However, the computational load of the optimal.
integration formula increases with the complexity of the random process,
A procedure for designing an optimal integration formula subject to
computational complexity constraints is presented in section 5. The
resullts of applying the derived formula to typical examples are com-
pared with most commonly used integration formulas (e. g, the trape-
zoid rule and Simpson's rule).

The types of complexity constraints considered are primarily

due to the limit on fast memory or storage, We consider generally

the class of optimal integration formulas which has the form

4

R+ 4 - 1) =81) +Zlaj(i)z(i +5-1)
J:

where z(°) is the measured value of the integrand at various time

instants and é\:(') is the calculated value of the integral,fy dt. Com-
plexity constraints are imposed by requiring.z to be fixed and/or aj(i)

to be piece-wise constant. Finally, the interplay between computational
load and output frequency is discussed in section 6. Examples of applica-

tions showing the advantages of this approach are given,



2, FORMULATION
In the case that the integrand is a lineéar function of a Markov
-random process which can be completely specified by the solution of a
set of linear differential equations driven by white noise, that is,
ir =Fy + Gu(t) + rw(t), (2-1)
where y(t) is a column vector, w(t) is a purely .random process with

E [w(t)] =0 (2-2)

E [w(t)yw(1)T] = qb(t - 7)

and

E [yt )] =v, (2-3)

E [y(t)y(t)T] = p,

E[ ] =expected value operator,
u(t) is a deterministically known input function. Knowing (2-1),(2-2),,
and (2-3), is equivalent to specifying the joint probability density of y(t)
for any finite collection of time. Then, the integration problem can be

formulated by computing the value of x(ti) for i =1, 2,3,... where

X = hTy(t); to< t<t x(o) = given (2-4)

N;

and measurements on the integrand, hl , at sampling points, are
g y pling p

- 1T -
z(t) =hiy(t) +v(t) t =t ,t,...,t (2-5)

N
where h is a vector with the dimension of y(t), v(t) is the measurement
noise and is assumed to be a purely random sequence with

E [v(ti)] =0 (2-6)

E [v(ti)v(tj)] = réij

In general, the vector h is a constant vector and without losing

generality, we assume hT =[1,0,0]. For the convenience of later



developments, {2~1) and (2-4) will be discretized at sampling points and

to simplify notation, from now on, we shall denote “ti." by "i", e.g.,

Z(ti) = z(i),x(ti) = x(i) and Y(ti)' The discrete version of (2-1) through (2-5) is

x(i + 1) x(i) i (1) w (i)
= ¥ +1,1) + + | (2.7)
y(i +1) y(i) u, (1) w, (i)
where
it 0
Y(i+1,1) = D o¥, =LY, =
Yarr¥az 0
e £+ 1 .
= ¥(t, +1,7) u(7)dT
W o G(7)
1
-:”1
E =0
w2
B b+ 1
wii| w5, wy() ] i 1
E = v, Mgt T & ok,
w, (1) A
L i

The measurement (5) is

2(i) = hly(i) + v(i), V.. (2-8)

Y(ti + 1 ‘T) is the transition matrix of (2-1) and (2-4), Instead of treating
(2-1),(2-4) and (2-5),(2-7) and (2-8) will take their place frqm now on, It is
to be noted that this kind of discretization does not, in principle, introduce

discretization errors, since we can precalculate ¥(i + 1, i), ul(i), uz(i) and

Q(i) to be as accurate as we wish, -



The problem then is to design a formula of the type
R(1 +1) = £(x(0), 2(0), 2(1), (2), ..., =(i + 1)) (2-10)
such that é\:(i +1) is, in some sense, a good approximation to the value
x(i +1) of (2-4) or (2-7). Iff is given, we have an anablysis pfoblem
which is discussed next, If f is to be determined, than it is the

synthesis problem, to be detailed in sections 4 to 6.

3. ANALYSIS OF KNOWN INTEGRATION FORMULAS

The error terms produced by >app1ying~ integration rules on a
deterministic integrand are expressed in terms of the higher order
derivative of the integrand as they are lis)tled invnumerical analysié
textbooks., In our case, where y(t) ._are random processes, there must
be random errors- generated in:additiont to?:'the'ld’étérrﬁliﬁfif‘sﬁc EErEEs,

In the field of numerical analysis, a general J?:th deérge integra;

tion formula can be represented by

4
X (L8 -1) =x (1) + Zajz(i +j-1) (3-1)

=l
where x*(’) is the computed value of x(°) by applying the deterministic
integration formula. The trapezoid, Simpson's and Newton's three-
eighths rules are special cases of it. For example, 4 = 2 gives the
trapezoid rule with a; =a, =%; 4 = 3 gives Simpson's rule with a; =a, =%
and a, =-§-d, In this section, a proceduré is developed for'calculating
the cumulated mean square error generated by applying this sth degree

integration formula, The criterion for judging the merit of these formulas

is chosen to be the cumulated mean square error

N .
J = ZE[x(i) - x*(i)]2 (3-2)
-
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Practically, the I»th degree integration formula is applied at every

th . . . . . * .
(£ - 1) sampling point, that is, for i =1,4,24.1,34-2,,., The x (i)'s
at other sampling points are not available, HoWever, for the purpose of
a fair comparison, additional (£ - 2) sets of Zth degree integration fdrmulas
have to be carried out to cover the missed x(i)'s; For exarﬁple, in the
-accompanying diagram

2nd degree

Wﬂ@%@%—ér : ' - integration
{1 [ 1 1 | formula

i

i X (o | ! 3rd degree
e e ey e Eal sintegration

formula

Two straight lines represent the time axes and the various marks on ‘trhe‘
lines indicate the places where the measurements are made., The 2nd
degree integration formulas are carried out ati =1,2,3,4,5,..,. (refer
to the upper line), but for a 3rd degree integration formula (refer to the
lower line) two sets of integration formulas have to be carried along, the
one ati=1,3,5,,,., the other at i =2,4,6,,.,, just for the purpose of
computing J as shown in (3-2),

Considering the general ath degree integration formula (3-1) and
substituting (2=8) into it, yields

2 4

* % '
x (i+4-1) =x (i) + Zaath'y(i +3~1) +Zajv(i +j -1 (3-3)
j=1 ' =l

Recusively applying (2-7), gives

x(i +4 -1) x(1)

4.1 ul(i +k-1)
e + Zyzuk—l
y(i+4 - 1) yi) | uy (i + k - 1)
4.1 wi(i+k-1)
2 yh-lek (3-4)
k=1

wz(i +k ~1)



Replacing y(i +j - 1) in (3-3) by the iteration equation in (3-4), we

convert (3-3) into

(3-5)

4-1 4 j-I
Uk LUk, T, j-1,, O, j-k-1 .
x (i+4-1) =x (i) +Zajh Y5, y(i) + Zajh ZYZZ [u2(1 +k-1)
j=l : j=l k=l
4
+w,(i +k - 1] +Zajv(i +j-1)
j=l

Combining (3~5) and (3-4), and letting

-
x (i)
X(i) = |=x(i)
0|
we have
X(i+ 4 -1) =8X(i) + U(i) + W(i) +S(i)
where
— C o4 -
A N I
I, O, : Zajh ?22
;3L
1
I Lmmcemcccca—n
8 =10,
0 _
[ 4 j-1 N
T j-k-1
Zajh YZZ Z(1 +k ~1)
J:l k=1
u(i) = [
ul(i +k-1)
4-1
L-1-k
k=1 uz(i +k -1) t

(3-6)



) j-1
j-k-1 . _
Zajh YZZ w2(1 +k -1
j=l k=1
w(i) =
4-1 wl(i +k-1)
L1~
y -k
k=1 wz(i +k - 1)
and - -
-, -
Zajv(i +i-1)
j=1
0,
S(i) =
—_— O,

Examining the term S(i), we find: thdt-at the :{th:-:Sﬁep,"iit'tcohtains
terms alv(i) througb; azv(i + 4 - 1), but at the next iteration, it contains
alv(i + 4 - 1) through azv(i +24-2), The presence of azv(i + 4 -1) and
alv(i + 4 - 1) makes S(i) correlated with the next and proceeding itera-
tions,

The mean equation of (3=6) is

X6 + 1) =8X0) +uli) : %(0) =x_ (3-7)
where

x(') & E[X()]
Defining P(i) 2 E[X()X() ] (3-8)

from (3-6), yields
. sz T . . AT vy T '

P(i+1) =3P(i)3 " + Qi) + UL)U(1) " + dX(i)u(i) (3-9)

T§T

= u(i)X (i) +L ; P(0) = Po



where
. c e AT
Q(i) = E[w(i)w(i)" ]
4 V
2 2 2
ZajR+2ala£R. 0,....,0 X X 0,.
i=l
O;- ’0 XZ. xz 0
and L= 0 0,.....0 ; Po = o “o
0 0, 0,
Py
0 0,....,0 0 0

The term, 2a aJ&R’ . comes from the correlation effect of S(i). The

1

criterion of (3-2) can now be equivalently expressed in terms of P as

N 1, -1 0,...,0]
J=ZTrace [MP(i)]; M = 'é' é' 8""’8

i=l

[0, 0, 0,...,0

(3-9) and (3-7) are two key equations. Applying (3-9) and (3-7) itera-
tively, we can obtain the error variances at all sampling points of the
integration/intervél. The cost, J, of (3-10) is used as a base of com-
parison in this paper, Other cost functions, suc.h as terminal mean
square error, can serve the purpose too. An example, for the conven-
ience of comparison with optimal integration, is given in the next section,
So far, we have treated the analysis problem on the known integra-
tion formulas, under random circumstances, In the next section, we - '»
deal ‘with the ‘probtems of disigning on’ optimal ‘intégration formula
which takes full advantage of the statistical knowledge of the integrand

and which performs optimally in the sense of minimum mean square error.
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In section 5, an optimal integration formula with complexity constraints

will be discussed.

4. THEORETICAL APPROACH TO A MINIMUM VARIANCE DESIGN
In this section, an optimal integration formula for obtaining the
best estimate of x(i) is developed by minimizing the cumulated mean
square error.
Given process (2-7) and measurements (2-8), we require the
optimal integration formula to be Athe one which takes the measurements,
z(i), up to the present, into coné’ideration, and in the meantime, minimizes

the performance index

N |
3= Z E[x(i) - &(i)] (4-1)

i=1
where %(i) is the best estimated value of x(i).
Since both (2-7) and (2-8) are linear, and we assume u(t) = 0,
over the whole interval, it is reasonable to take the best estimate of
x(i + 1), ?{(i + 1), to be a linear combination of 9{(1), [)\r(i) and the present
measurement, z(i + 1), that is,
R+ 1) R(i)
= |A(®) + B} =z +1) (4-2)
i+ 1) 40
where A(i) and B(i) are matrices and chosen to minimize J.
In order to solve this optimization problem; we employ the general
[5]

technique of converting a stochastic problem into a deterministic prob-

lem by working with means and variances.
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1

Defining the variances
N o T,
x(i) [x(i),y m]}

P(i) = E

ol Bo.5T o]
B) = E .
A

y(i)]

and cross~correlation

([ -
(D) 3,51
S(i) = ES
LY(i_)_
we can convert the performance index J into
=5 A
J =ZTrace D [P(i) + P(i) - 2S(i)] (4-3)
i=l

where

10,0,......0,0_}

The equivalent minimization problem js to choose A(i) and B(i), Vi,
by minimizing (4-3). The solution of this problem is straightforward by
applying the well-known technique of variational calculus (see appendix A)
and the solution is

A(i) =¥(i) - B(i)HY (i) (4-4)

B(i) = M(i + )H(HM(i + 1 )HT + R)‘1 (4-5)
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where

M(i+1) = P(i +1) - ¥(0S(0) %D (4-6)
H =[0,hY]

The orthogonal condition, E{é\((i)[é\{(i) - x(i)]} =0, for all i, can
be easily proved, that is to say, the linear estimator given in the form
of (4-2) is the best linear estimator .of x%(i) (see appendix A), Further-
more, if all noises are gaussian distributed, (4-2), with A(i) and B(i)
obtained from (4-4) and (4-5), />\:( i) is the conditional mean given all

[6]

the measurements up to the present' ', or
AL . . .
x(i) = E[x(i)/2(i), 2(i - 1),.. z(1)]

After a close examination of (4-2), (4-4),(4-5), and (4-6), we find a
correspondence between this estimator and the well-known Kalman-Bucy
filter, with B(i) given in (4-8), as the Kalman gain., However, in our
derivation, no gaussian distributed noise is being assumed, whereas
the gaussian distributed noise is a basic assumption in the Kalman-Bucy
filter, Another noteworthy point of this derivation is that the same
solution as (4-4), (4-5) and (4-6) is optimal for other performance
indices J, such as the cumulated mean squ‘are error, the terminal
mean square error, or even the mean square error on part of the state
variables (see appendix A), A simple example is given below and a
comparison between this optimal integration formula and the commonly
used formulas (e. g., trapezoid and Simpson's rules) is given by using
the equations derived in section 3,
Example

INTEGRATION OF A FIRST-ORDER ZERO-MEAN RANDOM
PROCESS

X =y

yEay tw (4-7)

z(i) = y{i)-
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where all variables are scalars and the sampling interval, d, is taken
to be L.

After discretization, we have

From (A-5),(A-6),(A-7) and (A-16),(A-17) in Appendix A we have

CL‘2
B(i) = -(1“,e)a
o(l -e™)
L1
i a 02\
1, af (1-e%
L St )
a(l = e )
A(Q) = :
0, 1

' A P . »
Applying (4-2) and replacing y(i) by z(i), we reach a very simple integra-
tion formula which carries the same computational load as the trapezoid
rule,

R +1) =%6) + a,2(i) +a,2(i +1)

a Coa2
(e -)+lec.(_f(l-e)2a)
a afl - e )

:Q;E_?f_»

a:(]. - eza)

where

i

|
(4-8)

a2
The weighting coefficients, a, and a,, are functions of & only,

and are independent of noise and time, Using (4-8), we calculate a and

a5, for different values of & as shown in the following table:
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o4 al az

0 @®..5 0.5
-2 0. 498 0. 488
-5 0.2 0.2

It is interesting to note that the trapezoid rule is essentially
the opt{mal integration formula for the case of @ = 0. For a com-
parison purpose, the numerical results obtained by applying. the=
optimal integration formula are plotted together with those obtained
by applying the trapezoid, Simpson's and rectangular rules, which
are computed by using the equations derived in section 3. In figure I,
for a = 0, where the integrand is comparatively smooth, the trape-
zoid rule can do as well as the optimal rule and Simpson's rule is
the worst of all, For a = -18, however, where the integrands are
very random, the optimal integration formula takes advantage of the
statistical information and as a result, a significant performance is
obtained,

This example shows how the knowledge of statistical phenomena
can help in providing better numerical results, If we try to extend
this approach to random processes of higher order or more general
random processes other than that of the exponentially correlated case,
as in the example, we find the computational load for the equivalent
Kalmagn;-Bucy filter become larger and larger, (i.e. Eqs (4-2),(4-4) and
(4-5) since for a higher order.random process, more equations have to
be carried along to update the best estimate of x(°), This, in general,
is not satisfactorjr. Hence, in the next section, we would like to con-
sider a procedure of developing an optimal integration formula with

computational constraints,
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5, OPTIMAL INTEGRATION FORMULAS SUBJECT TO COMPUTATIONAL'
CONSTRAINTS
The computational constraints considered in this section are to re-
quire the optimal integration formula carrying the samé computational load
as that of the deterministic integration formula no matter how high'the.order:
of the random process is,
A cla;ss of integration formulas will be developed, which is given

as fokllows
y

R +4-1) =530 +Zlaj(i)z(i +5 -1 (5-1)
J:

where the new estimate of the integral is given by the old value of the
integral at previous times plus a linear combination of past measurements,
and where £ is the ldegree of the integration formula in conformity with

the usual terminology of numerical analysis. The aj(i)'s are to be deter-
mined to minimize the performance index which is the same one as given

in section 3 and 4,

N -
I =ZE[X(1) AT
—

For 4 = 2 the optimal integration formula will have the form of the
trapezoid rule except that the weighting coefficients are to be determined.
That is

R+ =00 + a (i)z(i) +a,(i)z(i + 1) (5-2)

In this section, only the 2nd degree optimal integration formula

will be considered,
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Following the same steps in'section’3,crand'defining
&)
X(i) & [ =(i)
y(i)
P(i) £ BX(1)X(1)" ]
we reach the same iterative relations for P(i) as in (3-9), for £ =2,

except for replacing all 3, by al(i) and a, by az(i).

That is
. . U . ; AT
P(i + ) =8(1)P(i)3(i) " + Q(i) + U((i)U(i) (5-3)
+3()X()UH) T + UOX(E) T8 (i) T + L(i)
s P(o) = Po
where _
a()’R +a,(0R  0,...... 0
+ Zai(i)az(i)R,
(i) = 0, 0,...... , 0
O’ O, ------ 9 0
. p—
J is converted into
= -
N I, -1, yeoeaes0
J =ZMP(i) 3 M= |-1, 1, 0,....,0 (5-4)
=]




-19-

Now, the equivalent optimization problem is to choose al(i) and az(i)
for all i to minimize (5-4), subject to the constraint (5-3), This is

a standard deterministic optimization problem except for the presence
of the delayed control az(i - 1) in L(i). This difficulty can be easily
overcome by defining another control variable T(i +1) = az(i) and
viewing this equivalent relation as the control variable constraints,

By the general variational technique, we define a Hamiltonian
K(i) = Trace {MP(i) A (i + D[P T +0(i) (5-5)
+U@UEH T+ sOXHOUET+ UOX()3(i)T
+ L(i)) + n(i + l)az(i)]}

where A (1 + 1) and N(i + 1) are lagrange multipliers of the constraints

(5-3) and T(i +1) = az(i), respectively,

Setting S = gl = (5-6)

we have the variation on J

N-1
N7 (3 s ey L ) .
83 _Z ('B—“'alzi)éal(l) +-§——a2(i)5a2(1)> (5-7)
i=l

The necessary conditions for al(i) and az(i) to be optimal are

oK(i) _
a zi) =0

1 ¥ (5-8)

(i) _

32, (D
Egs. (5-3),(5-6) and (5-8) constitute a two point boundary value
problem, An analytical solutionito this problem, in general, is
‘either hard to reach or unavailable, The numerical niinimization

technique is applied, In this paper we adopt the well-known steepest

descent gredient method and a numerical example is solved by applying it.
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In general, the weighting coefficients al(i) and az(i) are time-
varying which may be inconvenient in real time applications,. To
eliminate this difficulty, a procedure for designing a piece-wise con-
stant coefficient formula is developed.

In the case of requiring al(i) and az(i) to be constant over the
whole integration interval, we follow the same approach for obtaining

time-varying optimal al(i) and az(i) as we did up to (5-7) and then write

(5-7) as
N-1 N-1
- O¥C(1) O¥(i)
8T = Z-?]:“ 631 + Z—s—za— 632
i=1 i=l

For small variations in 6a1 and 5a2, and requiring 0J = 0, we have

h (5-9)

as contrasted with (5-8).  The solution essentially rernajti-tensame,
Eq. (5-9) can be very easily extended to the case of piece-wise con-
stant coefficients, The restraints on constant or piece-wise constant

al(i) and az(i) would of course result in a decrease in accuracy,

EXAMPLE: INTEGRATING THE GYRO OUTPUT

In a gyro performance test, 3] a gyro pack is installed in a sled
which is tested on a long horizontal track, Gyros are used to measure
the angular velocity of the sled about the body axes y, z and x, where x

is perpendicular to the paper
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/gyro pack

From a consideration of the characteristics of gyro and vehicle
dynamics, 'Vx’ the angular yelocity of the sled a.bout the x-axis, can
be modelled as a 5th order gaussian Markov random process driven
by white noise and v,, asa 3rd order gaussian Markov random pro-
cess, 3] Vo and v, are uncorrelated, We are interested in the angular
derivations of the gyro pack from the x-axis and the z-axis which

normally would be zero, The differential equation, which describes

the v, process, is shown as follows

R , Bw Aw -
B’l 0, Bw2 Y2 AW 2 . Y1 v,
V2, ol 1, ol
Vs 0, 0, 1, 0, 0 Y,
. - W
0, -0 2 “Ya 0, 0
Y3 5 . V3
. *Q
Y4 0’ O: 0 01 ]_ Y4
'}” 0, 09 -w 2 . Yy
__5_ ’ Yl, wyl B L_5_
hy . 1
0 1] Q

+{0 | w(t) +}0 [ u(t)

1 ,:’0
0 0
L fo

where we take v as v, and wy ,wy are two natural frequencies of
1 72

the vibration of the vehicle, and
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Ql =5

w =607 rad/sec,
V1

W = 3207 rad/sec,
Y2

A =0,195 mmd/sec.2

H

B

1

0. 0399 rad/sec. 2
The gyro dynamics are neglected here, The measurements are
taken from gyro outputs which are computed by the white noise

2(1) = y,() + v(i)
where

E [%(i)]=.0

E [v(i)v(j)] =R6ij; R =0.01

We are interested in obtaining the angular deviation that is, the

integrated value of the angular velocity of the vehicle, or x = ylg x(0) = 0,
;. The numerical results for zero, parabolic and sinusoidal input
(i. e.u(t)) are given below over 30 integration steps. Improvement by
applying optimal integration rules is clearly shown, eSpecially in the
zero~mean ease, 25% improvement over that of the trapezoid rule is
expected, if we apply it to the x-axis, Even greater improvement is
expected, if we apply it to the z-akis, The cost for deterministic integra-
tion formulas is computed by applying the results in section 3. In the
case of u(t) = 2t, or equivalently tz input to the integrator x(t),:the:costs
for Simpson's rule and Newton's three-eighths rule remain unchanged
as do those in the zero mean case, since Simpson's rule and Newton's
three-eighths rule can integrate parabolic functions perfectly; the

deterministic error is zero, The only error is due to random error,
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The cost for applying an optimal integration formula to the z-axis

8

is 0,332 x 10~ ra;d2 which shows an improvement; and that for applying

the trapezoid rule is 0,98 x 10-“7 radz. The optimal values of al(i) and
az(i) for this case are shown in figure 3,

In the case th'at/'ai(i) andmé.é(i) are constrained to be constant :

over the whole integration interval, then, for the x-axis case,

we have
J =0.413x 107°
a; = 0. 4896 x 1073
a, = 0.4893 x 1073

Only 4% improvement is expected,

For the z-axis case, we have

J =0,1583x 107°
a; = 0.1808 x 1072
-3
a, = 0.1877 x 10
25% improvement is expected,
T of
°% | Optimal Formula Trapezoidal Simpson's Newton's 3/8
u(t)
n =5 ‘ =5 -5 -5
0 D.30x.10 0.4205 x.10 0. 616708 x 10 0. 438118 x 10
-4 -5 -5
2t 0.6677 x 10 0.616708 x 10 0. 438118 x 10
. ; -4 -5 -5
Sin 483t 0, 1410 x 10 0.616708 x 10 0.438118 x 10




Magnitude
of Coefficients
A

0.15x10°3

0.1x10°3

0.5x10 *

Step

FIGURE 3
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6. A HIGHER DEGREE INTEGRATION FORMULA

A higher degree integration formula generally requires less
computation to cover the same integration interval, but it is used at
the expense of output frequency of the integrated value (refer to Figure 4),
In principle, given a certain amount of computational capacity, it is
possible to compute the optimal integration formula of appropriate degree
to fit it. Héwever, it turns out that we need not to repeat the computa-
tions for the formulas of different degrees. We only have to get the 2nd
degree integration formula and ther; all higher degree formulas can be
derived directly from it

t. 2nd degree
S .
integration

Ja qu/%/\:r

formula

| . :
e, ! e el Tl Tl Tl ot 3rd degree
! : integration
formula

Common Output Points
As an illustration (see the accompaying diagram), for a 2nd degree
formula, x(*) is available at every sampling point, but for a 3nd degree
formula, it is available ony at every’other sampling point, Thus, if
only accuracies at common output points are important, the coefficient
aj}t({))' for the. 3r.d:degr‘_¢e.1_?oi'mula can be directly obtained from aj(i) for

the 2nd degree formula, by the following relations
2, (1) = (i)
%) = a (i) +a, (i +1 6-1
a, (i) = az(l a1(1 ) (6-1)

a_,f‘(i) = ay(i +1)
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I

[

!
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|
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These relations can be generalized to higher degree. This means that
once we have obtained the coefficients for the 2nd degree formula, the
coefficients for other degree formulas can be directly obtained without
having to solve another optimization problem., This assertion is proved
in Appendix B, for interested readers,

Since the accuracies of optiﬁlal formulas of different degrees
at common output points are the same, a trade-off between computa-
tional speed and output frequency is possible. As far as computational
speed is concerned, only the numbefr of multiplications will be counted,
since it is the main contributor to computing. Let N, a very large
number, be the number of sampling points, Then the number of multiplica-
tions required to be carried out over this integration period by using the
Jﬂth degree formula is E%N. The number of output points given by applying
the otB degree integration formula is N/(4-1). The plot of the number of
multiplications against the number of outputs is shown in Figure 4. It
is a linear curve, For instance, for 2nd degree integration formulas,
the number of multiplications required is 2 N and the number of outputs
is N. But as the dégree goes higher, the computational load is decreased,
and so is the number of outputs, Thus, if one is willing to accept less
outputs but at equivalent accuracy, he can get away with lower computa-
tional loads, Therefore, depending on the speed of an onboard computer,
an integration formula of appropriate degree which will achieve equal
accuracy at common output points, can be chosen by using Figure 4,
This kind of trade-off cannot be done for deterministic integration rules,
since the a'ccuracies of the integration at the common output points are

not equal,



-28-

7. CONCLUSION

It has been shown in this report how to design an optimal integra-
tion formula by taking the statistical knowledge of the integrand into
account, and also how to derive higher degree formulas from a 2nd degree
'formula. A trade-off between output frequency and computational load
has been discussed, In any case, the authors strongly believe that
this work would prove useful lin space navigation applidations: .

Further researches and developments 1n this area are expected,
An interesting and important problem in this area is to find the updating
numerical formula for a directional cosine differential equation which
is used in the strapdown navigation system for updating the attitude of

a space vehicle,
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APPENDIX A

MINIMUM VARIANCE FILTER:- -

In this appendix, instead of considering the problem formulated
in section 4, we give a general dei‘ivatibn of the minimum variance:
filter, The optimal integration formula shown in section 4 will be a
special case of this.

Consider a Markov random sequence A
(A-1)

x(i+1) = 8(i)x(i) + w(i); E[x(0)] = x_, E[x(0)x(0) "] = Po; i =0,...,N
where x(°) is aﬁ .n>x 1 vector, E_B(") is al.n. ‘n x n transition rriatriﬂx,‘ a;1d’

w(" ) is the n-dimensional white noise with

E [w(i)] =0,

E [w(i)w(j) "] = Qé,,
The measurement ;;Ve ‘have is
2() = Hi)x(i) + v(i)  (a-2)

where z(i) is an 4 x 1 vector, H(i) is an 4 x n matrix and v(i) is an

Z-dimensional white random noise with
E [v(i)] =0

E [v(i)v(j)T] = RO,

Since (A-1) and (A-Z) are linear, we assume the optimal estimate of
x(i + l),é\c(i + 1), to be a linear combination of the previous best estimate of
x(i),é\c(i) ;- and the present measurement z(i +1), Thatis,".
é\z(is +1) = A(DRG) +B(D)z(i + 1) (A-3)
where A(i) is an n ¥ n matrix and B(i) is an n x £ matrix, and A(i) and B(i)

are to be determined so as to minimized the performance index J, which is,

N
J = Z E || x(i) - &0 [I”, (A-4)
::i=0 o o T Y D(i) .
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The presence of D(i) increases the generality of J. For example,

puting D(i) = 0 for i = 0,1,...,(N - 1), would result in a terminal vari-
ance minimization problem,

D(i) is assumed to be symmetrical,
Defining the variance

P(i) = Efx(i)x(i)" ]
B() = ER0ADT]
and cross correlation
S(1) = E{=()*0) 7}
we derive the following iterative equations for P(i), Iéf('i;),, :and S(1) by
using (A-1),(A-2) and (A-3),

T
P(i +1) = 3(i)P(1)8 (i) + Q(1i)

-

;3 P(o) =Po (A-5)
8 PUTRARTRAN. | N neers o T T . AT
(i+1) =A({)P()A(L)™ + B(i)H(@{E + )P(I)H(L + 1) B(i)~ + B(i)RB(i)

+B(OHG + Da()S@AMT +amstrHem THG + ) e

5 l/;(o) = Po (A-6)
. . ALy . . T,,..T
S(i +1) = $(D)S(DA(YY + P( + DH( + DTB(1)T; S(o) = Po (A-T)
and the performance index (4) is converted into
N-
A . T
J = Trace ZD(I)[P(I) + P(i) - S(i) -S(1)" ], . (A-7)
i=0 /
Since D(i) is a symmetrical matrix
N A )
J = Trace¢ ZD(i)[P(i) + P(i) - 28(i)];. (A-9)

Now, the equivalent optimization problem is to choose A(i) and
B(i) to minimize (A-9), subject to (A-5),(A-6) and (A-7) as constraints,

Following the well-known technique of variational calculus, define the
Hamiltonian,
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¥(i) = Trace {3(1)[13(1) + Q(i»)..v 2S(i) ]+ B(ir+ 1)?9(1 +1)
M+ DS+ (A -10)
where €(°) and (') are Lagrange. multipliervé, with dimension n x n.
(A-5) is not jointed to (A -10), since (A-5) is -no't a function of the con- .
trol variables,

Necessary conditions are listed as follows:

From. ;a}—%(ﬂ = gk{) énd ?5%3 = ﬁ(i) we have
| S R
£(i) = D(i) + A()TE(i + DA() ; E(N) = D(N) (A-11)
i) = 2A() TE(i + 1) B()H( + D8(i) + A(D) n(i + 13 (i) (A-12)
_2D(i) ; m(N) = -2D(N)
From g—f;% = an& %—g(l—l) =0, yiélds

2E(i + 1)[A(i)1/?\3(i) + B(i)H)(i + 1)§‘>(i)S(i)]‘+"q(i + i;)[éﬂA(i)S(i)r] = 0: (A-13)
2¢(i + D[BWH( + DPHH(G +1)7 + BOR + as() Ta (i) 1 +1 7]
i+ D[PE+DHGE+DT] =0 (A-14) |

Eqs. (A-6,A-7),(A-11,A-12), (A-13, A~14) constitute a two point
boundary-value problem. In general,the analytical solution is not .. .
available for a two-point boundary-value problem. In our case, however,
this is possible. It is easily seen from (A-13) and (A-14). If we let

n(i), = ~28(i) for i = 0,,...,N (A -15)
then : |
/\ Ll LT . . P o : o
A(D)P(i) =[3(i) - B(i)H( + Da(i)]S(i) (A-16

B(H(G #+ DP(OH(E+ )T +BER + AWDSH T80T HE + )T

CoEPERDHGE+ DT “(A-17)
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We will verify the truth of (A-15) later,
From the initial condition 1/;(0) = S(o), (A-16) becomes
A(o) = &(0) = B(o)H(1)¢(0). - (A-18)
Substituting (A-19) into (A-17), we have
B(o) = [PMH(NT - 8(0)5(0) T8 (0) THN T IHMPMHM T

- H(1)3(0)S(0) T8 (o) Tr() T + R]L (A-19)

A
If P(l) =S(l), then we can carry (A-18) and (A-19) a step further
‘ A
and iteratively, we can prove (A-18) and (A-19) are true and P(i) = S(i),

for all i, That is,

A(i) = 8(i) - B(i)H(i + 1)8(i) (A-20)
B(i) = [P(i + DH(i + 1) T - 6(1)S(3) "8(1) "H(i + 1], (A-21)
[H( + )P+ DH(@ + 1)T - H(i + l)é(i)S(i)Té(i)TH(i + 1)T + R]'1
To prove ]{5\’(1) = S(1), we substitute (A-18) and (A-19) into (A-6).
After manipulatidn,:this yields
"P(1) = 3(0)P(0)3(0)” + [P()H(L)" - §(0)S(0)%(0) H(1) ]B(o) .
Similarly, substituting (A-18) and (A-19) into (A-7), we have
. ' - (A-23)
S(1) = 8(0)S(0)3(0)~ + [P(VE(LT - &(0)S(6)8(0) TH(1)  1B(0)
(A-22) and (A-23) imply 9’(1) = 5(1) and by induction, we prove
f\J(i) = S(1) (A—24)

The Orthogonality Principle:

The interpretion of (A-24) leads to the orthoggnality prirciplé :
of minimum mean square estimation. This principle states that /:\:(i) is
the optimal linear estimate of x(i), for all i, if and only if the error
vector e(i) éx(i) - é\c(i) is arthogonal to Q(i), that is, E[e(i)g\{(i)] =0, for
all i, or S(i) = ]g(i). Thus, if (A-15) is true the filter derived so far is

the optimal linear filter in the minimum mean square sense,
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Now, we go back to prove (A-15), which éays,‘ .

nei) = =281 ; V.. (A-25)

1
Rewriting (A-20) as
B(i)H(i + 1)®(i) = 8(i) - A(i)

and substituting it into (A-12), we have
(A-26)

n(i) = A(i)T[Zg(i +1) + (i +1)]8(3E) - 2A()TE(1 +1) A(i) - 2D(i).

Multiplying (A-11) by 2 and adding to (A-26), yields
T
[n(i) +28(i)] = A(i) [28(i +1) +m(i +1J]8(D) (A-27)
From the boundary conditions £(N) = D(N) and N(N) = ~-2D(N),
we have -
N(N) + 28(N) = 0

Applying (A-27) iteratively, we prove that

n@ +28(0) =0 ¥,

Thus far, we have deriv;:d the optimal' filter having the form
(A-3) with A(i) and B(i) given by (A-20) and (A-21), which can be
calculated by using (A-5),(A-6) and (A-7), Furthermore from the
orthogonality prindipley we: provel-the filter vgiveén Ky (A)-B) to: be the
optimal linear mean square filter., Two points to be emphasized here
are that first, no gaussian assﬁmption on the noise probability density
function is made and second, in the computiné process to obtain A(i) and
.B(i), D(i) does not appear in the calculations; that is, the solution given
by (A-3),(A-21) and (A-20) remains the same no matter what D(i) is.
This justifies the statement in section 4 that the integration formula
is optimal for the performance “H‘i"r}dex other than J given by Eq. (4-1),

The connecgion of this mi;imum variancel“?ilter with the well-
known Kalman-Bucy filter is that B(i) given by (A-21), i8 exactly the
Kalman gé.in at i + 1, This filter can be viewed as an alternative deriva-

tion of the Kalman-Bucy filter,
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SUMMARY OF RESULTS

Plant
x(i +1) = d()x(i) +w(i) ; E[x(o)x(o)T] = Po
Measurements
0 -
2(1) = H())x(i) +v(i) 5 E[v(i)] = 0, E[v(i)v(j)] = RO,
-Minimum -Va'riance Filter
81+ 1) = A()R(G) + B(D)z(i + 1)
Performance Index J

N
J = ZE'H%) - x(1) || gy

i=o
A(i) and B(i) are given by

A(D) = 8(i) - B(H( + 1D3(i)
B(i) = [P+ DHGE + )T - s(sm) Ta@ THE + 1T,
[H(i + VPG + DH( + )T - H(i + D8()SE) “e(i) THGE + 1T +R]™

where P(i) and S(i) are calculated by

P(i+1) =3()P()8(i)T +Q(i) 3 Plo) = Po

S(i+1) = 8()S(A>) T + PG+ DHE + )T B(H)T ; S(o) = Po
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| DERIVATION OF A HIGHER DEGREE INTEGRATION FORMULA-
FROM THE 2ND DEGREE FORMULA.

Only the derivation and proof for the case of obta‘in"inAg“3rd
degree weighting coefficients from 2nd degree ‘édeffic;:ié‘nts'will be
given, dther higher degree formulas will be a direct' extention., -

Two optimization problems,

(1) 2nd degree integration formula
A, A . Lo §
x(i+ 1) =x(i) + al(l)z(1) + a2(1)2(1 + 1) Vi (B-1)

al(i) and a, (i) are optimally choéen such that

N/2 . o o
J = Z MP(2i) is a minimum, subjectto constraint (5-3)
i=l
which is e T
P(i + 1) = 8()P()&i) T + Q) +......,+L(i) (B-2)

(2) 3rd degree intergration formula
x(i +2) = x(i) +aj(D)z(i) +ab(@)z(i + 1) + ag(i)zaf 2) (B-3)
fori=1,3,57;....,N
ai(i), ag(i) and a;(i) are optimally chosen such that

I A

B N/z PR .- N P P S ) R N
J = Z ' MP‘(Zi) is a minimum, subject to the constraint of ‘

=l

similar form as (B-2),
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Now we want to prove thatithese two minimization problems will
give the same optimal cost J by applying the following re~hétzidnaﬁb;¢bﬁzeen
these two:setsinf coatficientsii » 507 i+ i

af(i) =a,(i)

al(i) =a,(i) +ali+1) fori.=1,3,7,...,N (B-4)

ab(i) =a,(i+1)

Proof: If we let

)

af(i) =a,5 (i) +a,5 (i)
thenr (B-3) can be written as
R+ =80 + atl‘"(ifz(i)' + g;l(i)z(i +1)
Rli+2) =8G +1 + az"g(i_)z(i +1) + ag"‘(i)z(i,+ 2).

The equation between” P(i + 2) and P(i) for the 3rd degree
formula can also be written as two sets of (B-2).

If we let
t . .
a'l (1) - al(l)
a,(i) = a,(i) for i=1,3,7,...,N
at(l) = al(i+l)
22 1
ab (i) =a (i +1)
3 AN
and if at:(i) a 1:'(i) a r't(i) and avt’(i) are optimally chosen at'.(i) will be
AR SRS ¥ 3 p ¥y » 22
optimally determined by the relation (B-5), Thus we have proved that

the optimization problemv(B-Z) is equivalent tmthé‘.oiptitﬁxi:zaxti'@ﬂplproblem

(B-1)-by the relatiom{Brd)ation (7 -1).



